

Evolving LEO Satellite Technology to Improve Forecast Accuracy

1960

TIROS-N launch in October

1980

1978. First AVHRR

due to ability to see

through clouds

First microwave sounder—

increase in forecast accuracy

 NOAA-15,16, 17. More microwave channels

agreement

2000

NOAA + EUMETSAT IJPS

NPOESS/JPSS development

the Defense Meteorological

Collaboration with DoD on

JPSS series operational

2020

- METOP-SG
- Jason-2/3
- COSMIC-2 GNSS RO
- GOSAT3 / AMSR3
- Next-gen sounder development

al

 Increased national and international partnerships

2040

- Enterprise ground system
- Capitalize on cutting-edge technology
- Information integration

- TIROS-1 launch in April 1960. 48° inclination
- Nimbus-1 launch in Aug.1964. First infrared sensor
- TIROS-9 launch in 1965.
 "Cartwheel configuration."
 First polar orbit

WINDSAT CoriolisFirst hyperspectral infrared

Satellite Program and

First hyperspectral infrared sounders

JPSS Overview

- ► The Joint Polar Satellite System, or JPSS, is the backbone of global satellite-based observations and products that feed U.S. forecasting models
- The JPSS Program consists of:
 - Five satellites (two in orbit and three in production), each with at least four instruments
 - A multi-mission ground system supporting JPSS and multiple partner satellites
- ▶ Right now, our primary focus is on increasing data availability through the launch of our next satellite, JPSS-2, and supporting partner missions

JPSS provides a continuous on-orbit presence from 2011 through 2038

NOAA-20: Today's Prime Operational Satellite

Launched into Low Earth Orbit—512 miles

14x Orbits Earth 14 times pole-to-pole with SNPP

Images entire globe twice a day

State of the art instrumentation to collect data on Earth's atmosphere, lands, and oceans

Sends more than 2,000 gigabytes of data to Earth every day

NOAA-20 (previously JPSS-1) flies in the same orbit as Suomi NPP, 50 minutes apart

JPSS Continuity of Operations

JPSS-2 Updates

JPSS-2 has made excellent progress towards launch in 2022

- Spacecraft has successfully completed its comprehensive performance test and is starting instrument integration
- All instruments are complete and are starting to be delivered to the spacecraft facility
 - First instrument, VIIRS, has been mated to the spacecraft
 - Second instrument, OMPS, has arrived in Gilbert, AZ
 - CrIS and ATMS will arrive in one month increments
- Satellite (spacecraft plus instruments) environmental testing to begin in spring 2021

Left: The JPSS-2 VIIRS instrument departs the Raytheon facility in mid-September. Credit: Raytheon Intelligence & Space

Right: Engineers at Northrop Grumman unpack the VIIRS instrument from its shipping container at the spacecraft facility in Gilbert, AZ.

Credit: Northrop Grumman Space Systems

JPSS-3 & 4 Updates

While the JPSS-2 satellite development is underway, progress is also being made towards JPSS-3 & 4 satellites.

JPSS-3 Updates:

Component	Scheduled Completion	Update
CrIS	May 2021	Preparing for electromagnetic interference instrument testing
VIIRS	June 2021	Undergoing instrument thermal vacuum testing
OMPS	November 2021	Preparing for thermal vacuum testing of its nadir sensor
ATMS	February 2022	In final assembly preparing for environmental testing in February 2021
Libera	Spring 2024	Under development
Spacecraft Structure & Harness	April 2022	Assembled

JPSS-3 VIIRS in TVAC Chamber

Instruments for JPSS-4 will start delivery in July 2022 with the spacecraft being ready for instrument integration in April 2023.

- We are improving JPSS Operational Mission Planning and collaborating with NESDIS partners to expand on the Enterprise Mission Planning Tool
- ► In the future, the ground system will support new missions, exploit new technologies, improve cybersecurity and increase automation through continuous evolution

Moving Data Processing to the Cloud

- Modernizing technology to accelerate data delivery to end users
- Reducing long-term cost by migrating data from on-premises facilities
- ► Improving user access
- Level I processes will be fully operational in the cloud in December 2020
- ► Future Cloud-to-Cloud user access and data delivery in work

California Fires and Hurricane Laura

HRRR Vertically Integrated Smoke

Ravan Ahmadov/CIRES

ATMS Hurricane Warm Core Anomaly

Southern Stratospheric Warming and Ozone Hole (2019)

Stratospheric Temperature

2019

2020

NOAA-20 OMPS NO₂ over California (0.25° x 0.25°)

Trends in OMPS NO₂ and On-road NO_x Emissions over LA

- Due to the COVID-19 pandemic, the U.S. went into a lockdown mid-March 2020
- The lockdown resulted in reduced traffic and NO_x (NO+NO₂) emissions from cars and trucks
- Time series of OMPS NO₂ (orange line) and measured on-road traffic emissions (blue curve) both show a drop corresponding to the partial/complete lockdown. *Original NOAA-20 OMPS data are at 17 km x 13 km resolution.*

Saharan Dust Event (June 5–26, 2020)

The Future of LEO

Evolve LEO architecture to enterprise system of systems that exploits and deploys new observational capabilities.

NESDIS Strategic Objectives

Advance terrestrial observational leadership in geostationary and extended orbits

Advance Space Weather observational leadership in LEO, GEO, and extended orbits

Evolve LEO architecture to enterprise system of systems that exploits and deploys new observational capabilities

Develop agile, scalable ground capability to improve efficiency of service deliverables and ingest of data from all sources

5 Provide consistent ongoing enterprise-wide user engagement to ensure timely response to user needs

6 Deliver integrated program development to provide a suite of products and services

Exploiting the Trends: Leveraging Advancements

- Make use of industry's significant investment of funding, expertise, and innovation to date.
- ▶ Put capabilities where and when we want them, enabled by shorter development timelines and more frequent launches.
- Provide more capability at a better price, leveraging smaller and more capable instruments and satellites.
- ► Achieve greater agility to incorporate continuous advancement, using new business models and partners.

LEO Sounder Initiative: Background

- ► The NOAA Satellite Observing System Architecture (NSOSA) study recommends a partially-disaggregated LEO architecture
- ► LEO Sounder Initiative serves as risk reduction and operational pathfinder for the post JPSS-era as Windsat and S-NPP successfully served for the current family of systems.
- Iteratively developing a government reference architecture and associated roadmap for the LEO Sounder Initiative to identify basic elements of cost
- Awarded fifteen LEO Sounder study contracts for instrument, satellite and architecture concepts
- Completed initial Mission Design Lab run to evaluate the viability of a common spacecraft to accommodate combinations of sounder instruments in a variety of orbits

Loss of Early Morning Satellites Results in a Significant Degradation in the Accuracy of Precipitation Products

CMORPH2 vs Gauge-Corrected Radar

 $[0.25 \deg/Hourly; 1-31 July,2018]$

- Removing the older DMSP and NOAA satellites reduces the precipitation accuracy from the black line to the blue line
- ► This resulting degradation reduces forecasting accuracy and real-time assessment for severe weather (e.g. precipitation and flooding)

Impact of Legacy POES on NWP

1		EMC Verification Scorecard
5		Symbol Legend
ı	A	PBO is better than CNTRL at the 99.9% significance level
Į	•	PBO is better than CNTRL at the 99% significance level
ı		PBO is better than CNTRL at the 95% significance level
Ī		No statistically significant difference between PBO and CNTR
4		PBO is worse than CNTRL at the 95% significance level
ı	٠	PBO is worse than CNTRL at the 99% significance level
i	▶	PBO is worse than CNTRL at the 99.9% significance level
		Not statistically relevant
ı		Start Date: 20190802

End Date: 20190903

- Geopotential height forecasts degraded at Day 5
- Wind forecast degraded at Day 1/5 for most layers
- Temperature forecast degraded globally, mainly UTLS

Near-Term Project Plan for SounderSat

Sounder Studies, RFI Responses, Lessons Learned, Tech Maturation Trends

Science Studies

- Disaggregated observations assessment
- Band evaluation and substitution
- NWP data exploitation

Architecture Analysis

- Gov't reference architecture
- In-house concept studies, prototypes and demos
- BOEs

Budget

- Cost Estimation, Modeling & Analysis
- FY2022 PPBE

Programmatic Preps

- Program Plan
- Level 1 Requirements
- ConOps
- Acquisition Planning
- Schedule

Development

Phase

~7/23

Execution

Phase

Disposal

~10/25

Definition

Phase

~2/22

Phase

~11/21

~2/21

What is after SounderSat?

Rank Order (priority for	Objective	Priority	Swing weight	Integrate d swing	15	A4-Global ocean color/phytoplanktor composition
improvement)		within	within		16	A15-Microwave Image
improvement		Group	group	weight	26	D5-Develop and maint international partnersh
1	D1-Assurance of core capabilities	D1	0.32	0.068538	20	international partnersh
2	A13-3D winds	A1	0.127	0.066988	27	D6-Low risk at constellar level
4	A9-Global GNSS-RO soundings	А3	0.118	0.063206		
5	D2-Compatibility with fixed budgets	D2	0.23	0.060948	28	A18-Radar-based glob precipitation rate
6	A2-Global real-time weather imagery	A4	0.111	0.058438	30	A8-Regional (CONUS) vertical MW
7	A7-Global RT vertical MW soundings	A5	0.101	0.055681		
8	A5-Global RT vertical IR soundings	A6	0.09	0.05269		soundings A6-Regional (CONUS)
11	A12-Ocean surface vector wind	A7	0.076	0.042643	32	vertical IR soundings
12	D3-Assurance of all capabilities	D3	0.16	0.039096	34	A11-Sea surface heigh (global)
13	D4-Programmatic responsiveness and adaptability	D4	0.15	0.035549	36	A19-Global soundings chemical concentratio
14	A3-Non-Real-Time global weather imagery	A8 0.062	0.062	0.032066	38	A14-Ozone
14			0.032000	40	A16-Outgoing LW radia	

15	A4-Global ocean color/phytoplankton composition	A9	0.048	0.028707
16	A15-Microwave Imagery	A10	0.036	0.025524
26	D5-Develop and maintain international partnerships	D5	0.08	0.00714
27	D6-Low risk at constellation level	D6	0.06	0.006429
28	A18-Radar-based global precipitation rate	A12	0.02	0.00584
30	A8-Regional (CONUS) RT vertical MW soundings	A13	0.015	0.004956
32	A6-Regional (CONUS) RT vertical IR soundings	A14	0.011	0.004364
34	A11-Sea surface height (global)	A15	0.009	0.003972
36	A19-Global soundings of chemical concentrations	A16	0.008	0.003714
38	A14-Ozone	A17	0.007	0.003545
40	A16-Outgoing LW radiation	A18	0.006	0.003435

THANK YOU!

For more information visit: www.jpss.noaa.gov

CONNECT WITH US!

